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Abstract. A general microscopic approach to describe properties of excited states in non-magic nuclei
is formulated. It is based on the consistent use of the Green function method in Fermi systems with
Cooper pairing. The main attention is paid to even-even nuclei, but for odd nuclei with pairing some
important relations are obtained too. The quasiparticle-phonon interaction which is introduced acts also
in the particle-particle channel and gives a quasiparticle-phonon contribution to pairing. When applied
to the theory of giant multipole resonances, the approach includes all known sources of resonance width,
i.e. QRPA configurations (which correspond to Landau damping in magic nuclei), the single-particle con-
tinuum (escape width) and more complex configurations (spreading width). The use of the Green func-
tion method makes it possible to include consistently the ground-state correlations induced by the more
complex configurations. In the approximation of the collective phonon creation amplitude squared, which
is considered in detail here, these are the ground-state correlations caused by two-quasiparticle–phonon
configurations; effects of these correlations have been found earlier to be noticeable for magic nuclei. Such a
unified approach will give a reasonable description of the giant resonances’ integral characteristics including
their widths and of some more delicate properties like fine structure and decay characteristics. Physical
arguments and earlier results of a similar approach for magic nuclei allow to use the known parameters of
the Landau-Migdal non-separable interaction for all non-magic nuclei (except the light ones). This means
that the theory developed is suitable for realistic predictions of the properties of unknown nuclei including
unstable ones. The inclusion of the single-particle continuum allows to consider also nuclei with separation
energy near zero.

PACS. 21.60.-n Nuclear-structure models and methods – 21.30.-x Nuclear forces – 24.30.Cz Giant reso-
nances

1 Introduction

One of the most important directions of the modern mi-
croscopic nuclear theory is an improvement of the ran-
dom phase approximation (RPA) for magic nuclei or the
quasiparticle random phase approximation (QRPA) for
non-magic nuclei. This means taking into account con-
figurations which are more complex than particle-hole or
two-quasiparticle excitations, respectively. It is very nat-
ural, in general, that the higher the excitation energy the
more complex configurations should give a contribution
to the level density and to the description of individual
levels. From this point of view, we need an improvement
of the (Q)RPA for levels’ energies beginning from the en-
ergies of two-phonon states because, microscopically, one-
phonon excitations are (Q)RPA excitations. But probably
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the most convincing evidence that it is necessary to go be-
yond (Q)RPA has been given by giant resonance physics.

It is well known that the RPA is even not able to de-
scribe all the integral characteristics of giant resonances,
first of all their widths and sometimes mean energies.
It is also known that for medium-mass and heavy nu-
clei the main contribution to the width is mainly given
by two-particle–two-hole or one-particle–one-hole–phonon
configurations, see, for example, the surveys [1–6]. These
and many other questions have been clarified consider-
ably by two approaches for magic nuclei which took into
account the three main mechanisms of resonance damp-
ing in a finite nucleus: decay via particle-hole configura-
tions of discrete spectrum (Landau damping, or width),
decay via particle-hole configurations with a particle in
the continuum (escape width) and decay via more compli-
cated configurations of the two-quasiparticle–phonon type
(spreading width). One of these two approaches [7–9] is
self-consistent on the RPA level, i.e. instead of two sets of
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parameters describing the mean field and the interaction
of nucleons, only one set of the Skyrme force’s parameters
was used. The second approach [5,10–16] is based on the
consistent use of the Green function method and is a gen-
eralization of the standard Theory of Finite Fermi Systems
(TFFS) [17] to include the one-particle–one-hole–phonon
states and the single-particle continuum. Both approaches
used realistic non-separable forces and were realized nu-
merically for 3–8 doubly magic nuclei including the un-
stable ones [9,11–13]. Inclusion of the single-particle con-
tinuum is particularly important for the widths of high-
lying giant resonances, for the unstable nuclei with the
nucleon separation energy near zero [9] and for more del-
icate problems, such as the description of the resonance
fine structure and decay characteristics [5,8,13,15].

The question arises about many hundreds of non-magic
nuclei which are of great interest in astrophysics and other
fields. In fact, there are no similar giant resonance calcula-
tions with non-separable forces in such nuclei. No doubt,
these nuclei also require a consistent quantitative treat-
ment and predictions of their characteristics, e.g. for un-
stable non-magic nuclei which can be studied now exper-
imentally with radioactive beam facilities.

During the last years many experimental results have
been obtained using the new generation of gamma-ray de-
tectors, namely the germanium ones, EUROBALL Clus-
ter, EUROGAM etc. [18,19]. High resolution and unprece-
dented efficiency for the detection of high-energy photons
up to 20 MeV has already given much new information not
only about superdeformed bands but also about character-
istics of one-quasiparticle–phonon, one-quasiparticle–two-
phonon multiplets in odd (see, for example, [20]) and two-
phonon multiplets in even-even spherical and deformed
nuclei. It is clear now that these results require improved
microscopic approaches and in the nearest future the num-
ber of results will rapidly increase. One can say that these
detectors will give direct information about complex con-
figurations which contain phonons. Measurements of simi-
lar quality of the excitations above the nucleon separation
energy, i.e. of the giant resonance fine structure, should
be possible too.

Thus, for non-magic nuclei we need a microscopic ap-
proach with realistic non-separable forces and complex
configurations which should satisfy at least two criteria:
i) it should be not too involved numerically, taking into ac-
count the huge amount of desirable calculations, and ii) its
parameters should be universal (or at least sufficiently well
known) so that the predictions of the approach would be
reliable enough. The approaches which contain phonons in
complex configurations, i.e. take into account explicitely
the quasiparticle-phonon interaction satisfy the first cri-
terion, because using two-quasiparticle–phonon and two-
phonon configurations instead of “pure” four-quasiparticle
ones reduces the orders of matrices considerably. This is
the first motivation of the present work. In addition, such
approaches are more transparent physically because, at
least for magic and semi-magic nuclei they contain a small
parameter g2, where g is the dimensionless creation ampli-
tude of the low-lying phonon. The Hamiltonian approach

with two-quasiparticle–phonon and two-phonon configu-
rations in non-magic nuclei was realized in the works of
Soloviev and his coworkers [1] who, however, used sepa-
rable forces to decrease the numerical difficulties of the
problem, did not take the single-particle continuum into
account and accounted for the ground-state correlations
only partially, i.e. mainly on the QRPA level. Very re-
cently, calculations of the dipole response in the non-magic
nuclei 18,20O have been performed in the framework of the
QRPA plus two-quasiparticle–phonon approach with the
Skyrme effective interaction, but not accounting for the
continuum [21]. The latter should be important for such
light nuclei.

For magic nuclei, the microscopic approach based on
consistent use of the Green function method in connection
with the g2 approximation in the propagators of the inte-
gral equations made it possible to take into account, in ad-
dition to inclusion of one-particle–one-hole–phonon con-
figurations, effects of the single-particle continuum [10–16]
and all the ground-state correlations, first of all the most
interesting ones caused by the complex configurations un-
der consideration [10–16,22]. A reasonable description of
characteristics, including widths, of isovector E1 [10], M1
[12,22], isoscalar E0 [14,16] and other giant resonances
in magic stable and unstable [12,13] nuclei has been ob-
tained. The method used the simple non-separable phe-
nomenological interaction of Landau-Migdal type with es-
sentially the same and known parameters for all nuclei
(except the light ones) and low-lying phonons which have
been calculated microscopically. So, in accordance with
the basic concepts of the TFFS approach, a generaliza-
tion of the method to non-magic nuclei (to nuclei which
allow the g2 approximation, to be exact) will conserve
the same property of the universality of the TFFS pa-
rameters. In other words, such a generalization satisfies
our second criterion about the reliability of the theoret-
ical predictions and this is the second motivation of the
present work. Of course, because of non-self-consistency
of the approach this criterion should be considered as a
first step in the right direction. It should be noted, how-
ever, that at present for non-magic nuclei there is not even
a formulation of a self-consistent approach with complex
configurations like the self-consistent RPA.

During last years there was a discussion about the
effects of the ground-state correlations beyond the RPA
[13,16,22,23] or QRPA [24], i.e. the ground-state correla-
tions caused by complex configurations. It was shown that
these effects play a noticeable, sometimes decisive role in
the theoretical description of the experimental data. The
most striking example obtained within the Green func-
tion approach is the explanation [22] of the observed M1
excitations in 40Ca with energy of about 10 MeV and in
16O with energy about 16 MeV by only these ground-
state correlations because the RPA does not give 1+ lev-
els in these regions. There are also other dynamic effects
of these ground-state correlations in magic nuclei which
were mostly experimentally confirmed [5,13,14,16]. The
main physical reason of this is that in the Green func-
tion approach with one-particle–one-hole–phonon config-
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urations a larger class of diagrams has been included as
compared with the Extended Second RPA (see [5]), where
the 2p2h ground-state correlations have been taken into
account and the first order of perturbation theory in the
nucleon-nucleon interaction has been used. It is of great
interest to investigate these new ground-state correlation
effects in non-magic nuclei. This is the third motivation to
generalize for these nuclei the approach which was devel-
oped earlier for magic ones.

In the Green function language, for nuclei without
pairing, using the g2 approximation means the explicit
treatment of the following one-particle mass operator:

M =
G̃

, (1)

where the circle is the phonon creation amplitude g and
the Green function G̃ does not contain the g2 terms. The
quantity M results in the excitations which are superposi-
tions of one-particle (one-hole)–phonon configurations in
an odd nucleus. In even-even nuclei, correspondingly, there
is the coupling to one-particle–one-hole–phonon configu-
rations which, in graphic language, corresponds to “inser-
tion” (self-energy) and “cross phonon” (phonon exchange)
graphs [2,25].

The main difference of non-magic nuclei from magic
ones is the necessity to take into account Cooper pairing
in the nuclear ground state. This means that, in addi-
tion to (1), we should also consider the following simplest
energy-dependent “anomalous” mass operators [26]:

M (1) =
F̃ (1)

, M (2) =
F̃ (2)

, (2)

where the lines with two ingoing or two outgoing arrows
denote the anomalous Green functions F̃ (1) and F̃ (2),
respectively, which are proportional to the gap. Pairing
phonons are not included here because their contribution
is expected to be small.

It is implied in the following that the initial quantities
of our problem are an “observed” mean field described by a
phenomenological potential, e.g., by a Woods-Saxon well,
and the pairing gap. The corresponding single-particle lev-
els should be extracted from the observed excitation en-
ergies of non-magic nuclei. The initial pairing gaps’ val-
ues are taken from experiment or from the solution of
the BCS gap equation with the phenomenologically de-
termined particle-particle interaction.

For even-even nuclei, by analogy with magic nuclei the
graphs (2) lead to the corresponding self-energy insertions
and phonon exchange graphs for the excited states (see
below). However, the contribution of graphs (2) to the
particle-particle channel should be considered also for the
ground state, first of all for the pairing problem. As long
as the nuclear pairing problem is solved within the BCS
approach, the quasiparticle-phonon interaction is not con-
sidered explicitely and quantitatively on this level. If we
consider explicitely the contribution of the graphs (2) we

must also take them into account in the pairing problem
and, therefore, to avoid double counting, change the phe-
nomenological particle-particle interaction entering the
usual BCS problem. This question will be considered else-
where but here we use a simpler phenomenological proce-
dure of “refining” the gap values from the quasiparticle-
phonon interaction under consideration. It is analogous to
the refinement of the phenomenological single-particle en-
ergies in magic nuclei which is usual practice in the Green
function approach [5,22,25].

This article is devoted to the application of the Green
function method to describe characteristics of excited
states in non-magic nuclei using a non-separable particle-
hole as well as particle-particle interaction in a consistent
treatment of QRPA and two-quasiparticle–phonon con-
figurations including the ground-state correlation effects.
The main attention is paid to even-even nuclei but for odd
nuclei with pairing some useful relations are obtained too
(in sect. 3). This article is a continuation of ref. [22] which
was devoted to magic nuclei. The generalization to non-
magic nuclei is not simple because phonon exchange can
significantly contribute to pairing. Therefore the explicit
inclusion of complex configurations, phonon exchange in
particular, requires re-shaping of the BCS pairing theory
too. It is important to deal with the quasiparticle-phonon
interaction in the particle-particle channel on the same
footing both for the static (pairing, first of all) and dy-
namical cases.

The article is organized in the following way: In sect. 2
a short derivation of the full system of the QRPA equa-
tions is given in the Green function language. In sect. 3
we go beyond the QRPA and introduce, in addition
to the particle-hole and particle-particle interactions, a
quasiparticle-phonon interaction in a very general form.
General equations for one-particle Green functions in non-
magic nuclei are obtained which are used in even-even
nuclei and also will allow to calculate excitations in odd
nuclei with pairing. In sect. 4 the g2 approximation is in-
troduced and the relations which take into account the
graphs (1) and (2) are derived for the case that dynam-
ical effects in the particle-particle channel are negligible.
Section 5 is devoted to the inclusion of the single-particle
continuum. In sect. 6 we discuss the main equations. A
simple model calculation is done in sect. 7. Conclusions
are drawn in sect. 8 and in the Appendix the formulae for
the propagators of our integral equations are given.

2 The full system of the QRPA equations in
non-magic nuclei derived in the Green
function language

To begin with, we will briefly derive the full system of
the QRPA equations for four effective fields in nuclei
with Cooper pairing using the Green function formalism,
i.e. the TFFS approach [17].

The existence of pairing in a Fermi system means that,
due to the particle-particle interaction, in the ground state
there is a non-zero amplitude for the transition of a parti-
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cle in a system of N particles into a hole and a correlated
pair in a system of N + 2 particles

i∆(1) =
N N+2

(3)

and the same for the reverse process

i∆(2) =
N+2 N

. (4)

We will consider the case

∆(1)∗(N) = ∆(2)(N + 2) ≈ ∆(2)(N) ≡ ∆, (5)

which is suitable in practice for all nuclei except for the
next-neighbours of magic ones.

Now we must fix the form of the mass operator ΣC

which accounts for Cooper pairing. To describe it in the
Green function language we take [17]

ΣC = −∆(1)Gh∆(2), (6)

where Gh is the hole Green function without pairing.
For nuclei with pairing it is convenient to use four one-

particle Green functions, GC, Gh
C, F (1), and F (2). They

satisfy Gorkov’s equations which in turn are obtained us-
ing eq. (6):

GC = G − G∆(1)F (2) , F (1) = GC∆(1)Gh ,

Gh
C = Gh − Gh∆(2)F (1) , F (2) = Gh∆(2)GC . (7)

For finite nuclei, in the representation of the single-
particle wave functions φλ (λ representation) the pole
parts of these Green functions are obtained from (7) (ex-
cept for the case of the odd particle in odd nuclei):

GCλ(ε) = Gh
Cλ(−ε) =

u2
λ

ε − Eλ + iδ
+

v2
λ

ε + Eλ − iδ
,

F
(1)
λ (ε) = − ∆λ

2Eλ

(
1

ε − Eλ + iδ
− 1

ε + Eλ − iδ

)
,

F
(2)
λ (ε) = F

(1)
λ (ε) , (8)

where

Eλ =
√

(ελ − µ)2 + ∆2
λ ,

u2
λ = 1 − v2

λ = [Eλ + (ελ − µ)]/(2Eλ) . (9)

The approximation of diagonal pairing ∆λλ′ = ∆λδλ̄λ′
has been used here. The quantity ∆λ satisfies the BCS
gap equation which contains the effective particle-particle
interaction F ξ

λλ̄λ′λ̄′ .
To describe the interaction of nuclei with external

fields and also to obtain the description of excited states in

nuclei with pairing, effective fields (or vertices) are intro-
duced which are changes of the mean field and the pairing
gap in the external field V 0

V = V 0 + δΣ = V 0 + UδGC ,

V h = V 0h + δΣh = V 0h + UhδGh
C ,

d(1) = δ∆(1) = −VδF (1) ,

d(2) = δ∆(2) = −VδF (2) , (10)

where U and V are the blocks which cannot be divided into
parts connected by two lines along the particle-hole and
particle-particle channels, respectively (we consider here
only such external fields which do not change the number
of particles, i.e. d(1)0 = d(2)0 = 0).

Let us find the quantities δGC, δGh
C, δF (1), and δF (2).

For example, δF (1),

δF (1) = δ(GC∆(1)Gh) =

GC(V + δΣC)GC∆(1)Gh + GCd(1)Gh

+ GC∆(1)GhV hGh . (11)

Here we used the relationship

δGC = GC(V + δΣC)GC , (12)

which is easily derived from the Dyson equation

GC = G + GΣCGC . (13)

The vertex V determining the change of G in the field V 0

was introduced in eq. (12)

δG = GV G . (14)

For the hole quantities Gh
C, Gh, V h we have similar ex-

pressions.
Applying eqs. (7) for F (1) and expressing the Green

function Gh by Gh
C, we have

δF (1) = GCV F (1) + F (1)V hGh
C

+ GCd(1)Gh
C − F (1)d(2)F (1) . (15)

Similary we obtain for δGC

δGC = GCV GC − F (1)V hF (2)

− GCd(1)F (2) − F (1)d(2)GC . (16)

By analogy with (15) and (16), δF (2) and δGh
C have the

form

δF (2) = F (2)V GC + Gh
CV hF (2)

− F (2)d(1)F (2) + Gh
Cd(2)GC (17)

δGh
C = −F (2)V F (1) + Gh

CV hGh
C

− F (2)d(1)Gh
C − Gh

Cd(2)F (1) . (18)

The relations (15)-(18) have been obtained in [17] by a
somewhat different method.
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Substituting the quantities δGC, δGh
C, δF (1), δF (2)

into eqs. (10) and applying the renormalization procedure
described in ref. [17] and using eqs. (8), we obtain the full
system of the TFFS equations for four vertices

V = eqV
0 + F

∫
dε

2πi
{GCV GC − F (1)V hF (2)

−GCd(1)F (2) − F (1)d(2)GC} ,

V h = eqV
0h + F

∫
dε

2πi
{−F (2)V F (1) + Gh

CV hGh
C

−F (2)d(1)Gh
C − Gh

Cd(2)F (1)} ,

d(1) = −F ξ

∫
dε

2πi
{GCV F (1) + F (1)V hGh

C

+GCd(1)Gh
C − F (1)d(2)F (1)} ,

d(2) = −F ξ

∫
dε

2πi
{F (2)V GC + Gh

CV hF (2)

−F (2)d(1)F (2) + Gh
Cd(2)GC} , (19)

where F and F ξ are the effective particle-hole and
particle-particle local interactions, respectively, the pa-
rameters of which should be obtained from experiment.
These parameters are known now [27], see also [10,11].
The quantities eq are local charges of quasiparticles, they
can be obtained from the theory [17] (electric charges) or
from experiment (magnetic charges). Parameters of eq are
also known, see for example refs. [10,11].

The excitation energies are obtained from the system
of homogeneous equations for the residues of the ver-
tices. The transition probabilities are determined by the
residues of the polarization operator at the excitation en-
ergies. For details and discussion see refs. [17,28].

3 General relations

As was already mentioned, in non-magic nuclei, the con-
ventional causal Green functions GC and Gh

C must be sup-
plemented by two anomalous Green functions which are
caused by the Bose condensate of Cooper pairs. If only
the mean field and the particle-particle interaction which
gives a pairing gap satisfying the BCS equation are taken
into account, all these Green functions are determined by
the set of Gorkov’s equations. Solutions of these equa-
tions are well known for both infinite [29] and finite [17]
Fermi systems, as we have seen in sect. 2. As a rule, in
addition to this simple particle-particle interaction, it is
necessary to take into account the particle-hole and the
quasiparticle-phonon interactions. In this case it is very
convenient to have equations for the one-particle Green
functions in such a form that the well-known Gorkov’s
Green functions would play the role of free Green func-
tions and simultaneously be the zero-order approximation
in the problem of accounting for the additional interaction
under consideration. In the Hamiltonian language, this

corresponds to the introduction of Bogolyubov’s quasipar-
ticles. We will also see that the initial phenomenological
mean field, particle-particle interaction and (or) the corre-
sponding BCS gap should be corrected (“refined”) in order
to avoid double counting of the quasiparticle-phonon in-
teraction. We shall implement in sect. 3 these procedures
for a general set of equations for exact one-particle Green
functions in Fermi systems with Cooper pairing. The gen-
eral equations for effective fields in such systems will be
also considered in this section. Symbolic notation is used
everywhere which is easily spelled out [29,17].

3.1 Equations for one-particle Green functions in
non-magic nuclei

We consider only two Green functions in an N -particle
Fermi system (the notation and conventions are as in [29,
17])

GC = −i〈N |Tψ(x)ψ†(x′)|N〉 ,

F (2) = 〈N + 2|Tψ†(x)ψ†(x′)|N〉 . (20)

They satisfy the set of equations [29]

GC = G0 + G0ΣGC − G0Σ
(1)F (2) ,

F (2) = Gh
0ΣhF (2) + Gh

0Σ(2)GC , (21)

which generalize the Dyson equation to the case of pairing.
Here, Σ, Σh, Σ(1), and Σ(2) are the corresponding fully
irreducible self-energy parts (mass operators), G0 and Gh

0

refer to an ideal Fermi gas. The equations for Gh
C and F (1)

which describe the inverse processes have similar forms.
In order to obtain realistic equations it is very conve-

nient to single out the well-known ingredients, i.e. mean
field and Cooper pairing which is described by a BCS-type
equation. To do that, we separate each of the full mass op-
erators into two terms, where the first does not depend on
energy and the second depends, but is not defined so far

Σ(ε) = Σ̃ + M(ε) , Σ(1)(ε) = Σ̃(1) + M (1)(ε) ,

Σh(ε) = Σ̃h + Mh(ε) , Σ(2)(ε) = Σ̃(2) + M (2)(ε) . (22)

Here Σ̃, Σ̃h correspond to a mean field and Σ̃(1), Σ̃(2) cor-
respond to the pairing which is described by a mechanism
like the BCS one.

In order to compare the approach under consideration
with the available experimental data, everywhere in the
following we bear in mind the usual situation for a real-
istic nuclear microscopic theory. Namely, the initial and
known quantities are an “observed” mean field, which is
described by a phenomenological potential, usually the
Woods-Saxon one, and an observed gap, which can be
taken from experiment or satisfy the BCS equation with
the phenomenological particle-particle interaction.

The main goal of our approach is to go beyond the
mean field and usual pairing, i.e. to take into account the
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quantities M , Mh, M (1), and M (2) (hereafter M i) which
are supposed to contain the quasiparticle-phonon interac-
tion. They contribute to the above-mentioned phenomeno-
logical quantities. Therefore, to avoid double counting it
is necessary to exclude their contribution from the phe-
nomenological quantities, or to “refine” the latter from
the quasiparticle-phonon interaction under consideration.
These refined quantities are marked with a tilde “˜”. The
procedure to obtain the refined single-particle energies and
gaps will be described in subsect. 3.4.

It was shown in [26,30] that using eq. (22) one can
transform eqs. (21) to the desirable form

GC = G̃C + G̃CMGC − F̃ (1)MhF (2)

− G̃CM (1)F (2) − F̃ (1)M (2)GC ,

F (2) = F̃ (2) + F̃ (2)MGC + G̃h
CMhF (2)

− F̃ (2)M (1)F (2) + G̃h
CM (2)GC , (23)

or, in graphic form

= + M + M h

+ iM (1) + iM (2)

= + M + M h

+ iM (1) + iM (2)

,

where the rectangular blocks stand for the mass operators
M i which are not specified so far. In the derivation of
eqs. (23) the equations determining the Gorkov’s Green
functions which contain the refined single-particle energies
ε̃λ and gaps ∆̃λ have been used

G̃C = G̃ − G̃∆̃(1)F̃ (2) , F̃ (1) = G̃∆̃(1)G̃h
C ,

G̃h
C = G̃h − G̃h∆̃(2)F̃ (1) , F̃ (2) = G̃h∆̃(2)G̃C . (24)

The Green functions G̃ and G̃h which determine the new
single-particle basis, i.e. “refined” single-particle energies
ε̃λ and single-particle wave functions φ̃λ, were introduced
by

G̃ = G0 + G0Σ̃G̃ , G̃h = Gh
0 + Gh

0Σ̃hG̃h . (25)

The BCS pairing mechanism —to be exact, its ana-
log which differs from the phenomenological one by the
refinement— has been introduced by means of the known
mass operator form

Σ̃BCS = −∆̃(1)G̃h∆̃(2) (26)

and using the Green function

G̃C = G̃ + G̃Σ̃BCSG̃C . (27)

Solution of eqs. (24) gives the explicit form of our bare
Green functions entering (23)

G̃Cλ(ε) = G̃h
Cλ(−ε) =

ũ2
λ

ε − Ẽλ + iδ
+

ṽ2
λ

ε + Ẽλ − iδ
,

F̃
(1)
λ (ε) = − ∆̃λ

2Ẽλ

(
1

ε − Ẽλ + iδ
− 1

ε + Ẽλ − iδ

)
,

F̃
(2)
λ (ε) = F̃

(1)
λ (ε) , (28)

where ũ2
λ = 1− ṽ2

λ = (Ẽλ + ε̃λ)/(2Ẽλ), Ẽλ =
√

ε̃2
λ + ∆̃2

λ .

Thus, specifying the mass operators M i in eqs. (23),
we can obtain useful approximations both for odd and
even-even nuclei with pairing. Odd nuclei were discussed
in [30], the more difficult case of even ones will be dealt
with here. In the following, we omit the index C in all the
Green functions.

3.2 Equations for the effective fields in non-magic
nuclei

The general eqs. (23) for the one-particle Green functions
together with similar equations for Gh anf F (1) can be
written in the matrix form

Ĝ = ̂̃
G + ̂̃

GM̂Ĝ , (29)

where

Ĝ =
(

G −iF (1)

iF (2) −Gh

)
,

̂̃
G =

(
G̃ −iF̃ (1)

iF̃ (2) −G̃h

)
,

M̂ =
(

M iM (1)

−iM (2) −Mh

)
; (30)

the elements of ̂̃
G are the Gorkov’s Green functions, which

have already been refined from the contributions of M̂ ,

̂̃
G = Ĝ0 + Ĝ0

̂̃
Σ

̂̃
G . (31)

They are known, see eq. (28). The non-diagonal elements
of Ĝ0 are, of course, zero.

In the Green function approach, the change of the den-
sity matrix in an external field V̂ 0(ω) is connected with
the change of the Green functions

ρ̂(ω) ≡
(

ρ(ω) −iφ(1)(ω)
iφ(2)(ω) −ρh(ω)

)
=

∫
dε

2πi
δĜ(ε, ω) . (32)

Let us obtain a relation for δĜ which will be used in the
following. We have from eq. (29)

(1 − ̂̃
GM̂)δĜ = δ

̂̃
G(1 + M̂Ĝ) + ̂̃

GδM̂Ĝ . (33)
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Using eq. (29) and the relation Ĝ = (1 − ̂̃
GM̂)−1 ̂̃

G, we
find

δĜ = Ĝ(V̂ + δM̂)Ĝ , (34)

where the quantity V̂ which determines the change of the
Green function G̃ in the field V̂ 0 has been introduced:

δ
̂̃
G = ̂̃

GV̂
̂̃
G . (35)

One can obtain from eq. (31) by analogy with the pre-
vious derivation

δ
̂̃
G = ̂̃

GV̂ 0 ̂̃
G + ̂̃

Gδ
̂̃
Σ

̂̃
G , (36)

i.e. the expression for V̂ has the form

V̂ = V̂ 0 + δ
̂̃
Σ , (37)

where by definition δĜ0 = Ĝ0V̂
0Ĝ0. We see that the effec-

tive field V̂ determines the change of the new mean field
and gap in the external field. Like in the case [25] of magic
nuclei with account for one-particle–one-hole–phonon con-
figurations, V̂ contains the poles which we need, and the
residues of V̂ are connected with the transition probabil-
ities.

In order to obtain a set of manageable final equations,
we restrict ourselves to the first order of M . This means,
though M̂ is not yet specified, we keep in mind that it
contains a small parameter. In this order we obtain from
eqs. (34,29)

δĜ ≈ ( ̂̃
G + ̂̃

GM̂
̂̃
G)(V̂ + δM̂)( ̂̃

G + ̂̃
GM̂

̂̃
G) ≈

̂̃
G(V̂ + δM̂) ̂̃

G + ̂̃
G(V̂ + δM̂) ̂̃

GM̂
̂̃
G

+ ̂̃
GM̂

̂̃
G(V̂ + δM̂) ̂̃

G ≈
̂̃
GV̂

̂̃
G + ̂̃

GV̂
̂̃
GM̂

̂̃
G + ̂̃

GM̂
̂̃
GV̂

̂̃
G + ̂̃

GδM̂
̂̃
G . (38)

Then the four equations for the effective fields should have
the following form:

V = V 0 + ŪδG , d(1) = d 01 − V̄δF (1) ,

V h = V 0h + ŪδGh , d(2) = d 02 − V̄δF (2) , (39)

where δĜ is determined by eq. (38).
The irreducible amplitudes Ū and V̄ differ from the

corresponding amplitudes U and V of the TFFS, because
here some contributions to the latter are explicitely singled
out and should not be counted twice. It is possible to
perform a renormalization procedure like in [17,25]. As a
result, we obtain the following system of equations for the
effective fields, after substituting eq. (38) into (39):

V i = ēqV
0i + F̄{AijV j + Aikdk} , i, j = 1, 2 ,

dk = ē′qd
0k − F̄ ξ{AkiV i + Akldl} , k, l = 3, 4 , (40)

where we have introduced V 1 = V , V 2 = V h, d3 = d(1),
d4 = d(2), and the corresponding propagators

Aij =
∫

Kij dε

2πi
. (41)

The quantities Kij can be obtained from (38); for the
realistic case of the g2 approximation they will be given
explicitely in sect. 4. According to eqs. (32), (40), the ef-
fective fields are connected with the density matrices, e.g.

ρ(ω) = A11V + A12V h + A13d(1) + A14d(2) ,

ρh(ω) = A21V + A22V h + A23d(1) + A24d(2) . (42)

The equations for ρ and ρh are

ρ(ω) = A11ēqV
01 + A12ēh

qV 02

+A13ē′(1)q d01 + A14ē′(2)q d02

+A11F̄ ρ + A12F̄ ρh

+A13F̄ ξφ(1) + A14F̄ ξφ(2) ,

ρh(ω) = A21ēqV
01 + A22ēh

qV 02

+A23ē′(1)q d01 + A24ē′(2)q d02

+A21F̄ ρ + A22F̄ ρh

+A23F̄ ξφ(1) + A24F̄ ξφ(2) . (43)

The quantities ēq, ēh
q , ē

′(1)
q , ē

′(2)
q , and F̄ , F̄ ξ play the role

of the local charge eq and effective interactions F , F ξ, re-
spectively, of the TFFS. Strictly speaking they should be
determined from comparison with experimental data with
the results obtained within the approach under consider-
ation. See, however, subsect. 6.2 below.

3.3 Excitation energies and transition probabilities

The excitation energies are determined by solving the sys-
tem of homogeneous equations which are obtained from
eq. (40). The transition probabilities from the ground state
to an excited state are found from the renormalized po-
larization operator (for the case d01 = d02 = 0)

〈V 0〉 = ēqV
0ρ + ēh

qV 0hρh =

ēqV
0(A11V + A12V h + A13d(1) + A14d(2))

+ ēh
qV 0h(A21V +A22V h+A23d(1)+A24d(2)).(44)

The quantity 〈V 0〉 determines the strength function
which is usually calculated with a smearing parameter

S(ω) =
∑

n

|M0n|2δ(ω − En) = − 1
π

Im〈V 0〉 (45)
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and gives the energy distribution of the excitation strength
under consideration. More detailed, i.e. nuclear spec-
troscopy information can be obtained if we calculate the
squared amplitude of the transition from the ground to
the excited state with energy En which is given by

|M0n|2 = Res|ω=En
〈V 0〉 . (46)

This quantity can be expressed in terms of the eigenfunc-
tions which should be calculated from the system of the
above-mentioned homogeneous equations. We do not de-
rive this rather involved expression because in practice it
is often more convenient to obtain from eq. (45) the quan-
tities |M0n|2 and various sum rules in terms of moments
of the strength function S(ω).

3.4 General pairing mass operator. Refinement of the
phenomenological single-particle energies and gaps

Let us introduce the new Green functions

Ḡ = G0 + G0(Σ̃ + M)Ḡ = G̃ + G̃MḠ ,

Ḡh = Gh
0 + Gh

0(Σ̃h + Mh)Ḡh = G̃h + G̃hMhḠh , (47)

where G̃ and G̃h are determined by eqs. (25). Then the
system (21) can be transformed to

G = Ḡ − ḠΣ(1)F (2) ,

F (2) = ḠhΣ(2)G , (48)

or

G = Ḡ − ḠΣ(1)ḠhΣ(2)G ≡ Ḡ + ḠMCG , (49)

where the mass operator

MC = −Σ(1)ḠhΣ(2) (50)

is a generalization of eq. (6), or (26) for the “refined”
pairing. The formula (50) is a general expression for the
mass operator which is responsible for pairing in a Fermi
system.

It is easy to obtain another form for eq. (49):

G = G̃ + G̃(M + MC)G . (51)

Using the results of this section one can obtain a gener-
alization to the quasiparticle-phonon interaction and pair-
ing case of the results of the TFFS dealing with the con-
nection of single-particle energies and the mass operator.
For simplicity and bearing in mind further applications
we will consider all the quantities in eq. (49) in diagonal
approximation in the single-particle index λ

Gλ = Ḡλ − ḠΣ
(1)
λ Ḡh

λΣ
(2)
λ Gλ . (52)

Following the idea of [31] let us represent the mass
operators M and Mh as sums of odd and even parts, e.g.,

M = Mev + Modd . (53)

Then defining the energies which we need as poles of the
Green function Gλ one can obtain from eq. (52) the formal
general expression for these energies Eλη in the known
form

Eλη =
√

ε2
λη + ∆2

λη , (54)

where

ελη =
ε̃λ + Mevλ(Eλη)

1 + qλη
, ∆2

λη =
Σ

(1)
λ (Eλη)Σ(2)

λ (Eλη)
(1 + qλη)2

(55)

and qλη = −Moddλ(Eλη)/Eλη. The index η enumerates
the solutions of the system (54)-(55).

Now it is possible to obtain the formulae for the
connection between the phenomenological (or observed)
quantities {ελ, ∆λ} and the refined ones {ε̃λ, ∆̃λ}. The
experimental single-particle energies should correspond to
dominant levels, i.e. the levels which have the largest spec-
troscopic factors. Therefore, the refinement should be done
in such a manner that one of the solutions should coincide
with the experimental value, and this level should be the
dominant one.

These experimental single-particle energies are initial
data for the whole problem. We denote these energies and
the corresponding gaps as ελ and ∆λ. Then using this con-
dition and also eqs. (22) and (55), we obtain the general
relations between observed and refined quantities

ελ =
ε̃λ + Mevλ(Eλ)

1 + qλ(Eλ)
,

∆λ ≡ ∆
(1)
λ = ∆

(2)
λ =

∆̃
(2)
λ + M

(2)
λ (Eλ)

1 + qλ(Eλ)
,

Eλ =
√

ε2
λ + ∆2

λ , (56)

with qλ = −Moddλ(Eλ)/Eλ. This leads in the case ∆λ = 0
to the prescription ελ = ε̃λ +Mλ(ελ) which has been used
earlier for magic nuclei [5,25].

4 The g2 approximation

In our approach, the specific features of non-magic nu-
clei are connected also with the new quantities M (1) and
M (2) which were absent in magic nuclei. To analyze them
in a transparent way and to present a numerically sim-
ple example of the new approach it is of interest to con-
sider the case of the g2 approximation (where g is the
particle-phonon coupling). We mean by this the restric-
tion to the case when the elements M i of M̂ contain only

g2 terms, and Green functions ̂̃
G instead of the total Green
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functions Ĝ. This case is the realistic one for semi-magic
nuclei. In [30] the corresponding dimensionless small pa-
rameters in 120Sn have been calculated for the low-lying
2+ and 3− levels, which give the largest contributions to
the two-quasiparticle–phonon configurations. It has been
found that this parameter is less than one.

In this section we specialize the formulae to the g2

approximation.

4.1 Additional approximations

Even in the g2 approximation, the formulae obtained will
be rather involved, due to the necessity to account for the
particle-particle and hole-hole interaction both in eq. (40)
and in the system of the TFFS equations (19) (the latter
is necessary to calculate the phonons used for the two-
quasiparticle–phonon configurations). Therefore, in order
to get explicit and still relatively short expressions, we
omit the particle-particle and hole-hole channels in both
cases. It is easy to abandon this approximation, if neces-
sary. This necessity might arise, e.g. when checking the
numerical performance of conservation laws; but we ex-
pect that the numerical contributions of these channels
are small enough for excited states [17,32].

Our first approximation (which is still on the QRPA
level) consists of setting d(1) = d(2) = 0 in the set of
eqs. (19), and of neglecting pairing phonons in all our
M i taken in the g2 approximation. It is easily seen us-

ing the formula M̂ = ĝD ̂̃
Gĝ that this approximation,

g(1) = g(2) = 0, gives only one term instead of four for
each M i. Because we will use only low-lying and collective
phonons in our two-quasiparticle–phonon configurations,
the corresponding corrections to these from the pairing
phonons should be small [32].

We thus obtain the following form of the mass opera-
tors

M1(ε) = Mh
1 (−ε) =∑

2,s

(gs
12)

2

{
ũ2

2

ε − Ẽ2 − ωs + iδ
+

ṽ2
2

ε + Ẽ2 + ωs − iδ

}
,

M
(1)
1 (ε) = M

(2)
1 (ε) =

−
∑
2,s

(gs
12)

2 ∆̃2

2Ẽ2

{
1

ε−Ẽ2−ωs+iδ
− 1

ε+Ẽ2+ωs−iδ

}
. (57)

Here the lower index 1 ≡ {n1, l1, j1,m1} (for spherical

nuclei), Ẽ2 =
√

ε̃2
2 + ∆̃2

2. One can see from eq. (57) that

in the case of ∆̃ = 0, there is no contribution of M (1) and
M (2).

Our second additional approximation is d(1) = d(2) = 0
in eqs. (40), (42), (44). This also can be abandoned in anal-
ogy with the results below, if experimental data should call
for it.

4.2 Derivation of the basic equations

Here the general equations of sect. 3 will be briefly de-
scribed using the g2 approximation and the additional
approximations of the preceding subsect. 4.1. The results
will be given in symbolic notation, while the explicit form
is given in the Appendix.

4.2.1 The effective fields and density matrices

The explicit form of δĜ of eq. (38) is needed. The first

term ̂̃
GV̂

̂̃
G, when substituted into eqs. (39) and (40), gives

equations which are similar to (19) of the TFFS but con-
tain refined Green functions and, therefore, ε̃λ and ∆̃λ. In

our approximations, ̂̃
GV̂

̂̃
G is given by

̂̃
GV̂

̂̃
G = δ

̂̃
G =

(
δG̃ −iδF̃ (1)

iδF̃ (2) −δG̃h

)
=(

G̃V G̃−F̃ (1)V hF̃ (2) −iG̃V F̃ (1)−iF̃ (1)V hG̃h

iF̃ (2)V G̃+iG̃hV hF̃ (2) F̃ (2)V F̃ (1)−GhV hGh

)
. (58)

We call the terms ̂̃
GV̂

̂̃
GM̂

̂̃
G and ̂̃

GM̂
̂̃
GV̂

̂̃
G graphs with

right and left self-energy insertion, respectively, describing
the place of M̂ with respect to V̂ in the above expres-

sions. The term ̂̃
GδM̂

̂̃
G corresponds to graphs where a

phonon is exchanged in the crossed channel (phonon ex-
change graphs).

According to our additional approximations, we should
also put d(1) = d(2) = 0 in the matrix V̂ and in eqs. (40), so
that for this system we have only the quantities A11, A12,
A21, and A22. Let us obtain, as an example, the formulae
for the “left” insertion graphs

−→ ̂̃
GM̂

̂̃
GV̂

̂̃
G =

(
G̃ −iF̃ (1)

iF̃ (2) −G̃h

) (
M iM (1)

−iM (2) −Mh

)

×
(

G̃ −iF̃ (1)

iF̃ (2) −G̃h

) (
V 0
0 −V h

) (
G̃ −iF̃ (1)

iF̃ (2) −G̃h

)
. (59)

For the matrix element ( ̂̃
GM̂

̂̃
GV̂

̂̃
G)11 it is easy to obtain

( ̂̃
GM̂

̂̃
GV̂

̂̃
G)11 = (G̃MG̃ − G̃M (1)F̃ (2)

−F̃ (1)M (2)G̃ − F̃ (1)MhF̃ (2))V G̃

+(−G̃MF̃ (1) − G̃M (1)G̃h

+F̃ (1)M (2)F̃ (1) − F̃ (1)MhG̃h)V hF̃ (2), (60)

so that the quantities K11
left and K12

left appearing in eq. (41)
are given by
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K11
left = --- --- --- ,

K12
left = --- --- + --- . (61)

Analogously one can obtain the matrix element (
̂̃
GM̂

̂̃
GV̂

̂̃
G)22 and the corresponding quantities K21

left and K22
left

K21
left = (−F̃ (2)MG̃ + F̃ (2)M (1)F̃ (2) − G̃hM (2)G̃ − G̃hMhF̃ (2))F̃ (1) =

--- + --- --- ,

K22
left = (−F̃ (2)MF̃ (1) − F̃ (2)M (1)G̃h − G̃hM (2)F̃ (1) + G̃hMhG̃h)G̃h =

--- --- --- + . (62)

Similarly the “right” insertion graphs can be obtained

−→ ̂̃
GV̂

̂̃
GM̂

̂̃
G (63)

in our approximations. The corresponding formulae for the Aij (i, j = 1, 2) are given in the Appendix.

Next consider the phonon exchange contribution. In the g2 approximation the variation of M̂ in the external field is

δM̂ = gDδ
̂̃
Gg . (64)

Variations of g and D do not enter because δg and δD are of higher order of smallness than g2 [25]. Substituting eq. (58) into

(64), the formulae for the matrix elements of
̂̃
GδM̂

̂̃
G are obtained, e.g.,

(
̂̃
GδM̂

̂̃
G)11 = (G̃G̃gDgG̃G̃ + G̃G̃gDgF̃ (1)F̃ (2) + F̃ (1)F̃ (2)gDgG̃G̃ + F̃ (1)F̃ (2)gDgF̃ (1)F̃ (2))V

+ (−G̃F̃ (1)gDgF̃ (2)G̃ + G̃F̃ (1)gDgG̃hF̃ (2) + F̃ (1)G̃hgDgF̃ (2)G̃ − F̃ (1)G̃hgDgG̃hF̃ (2))V h, (65)

so that the quantities K11
exch and K12

exch which give the contributions to K11 and K12 caused by the cross phonon graphs, are
given by

K11
exch = + + + ,

K12
exch = --- + + --- . (66)

An analogous treatment of ( ̂̃
GδM̂

̂̃
G)22 yields K21

exch
and K22

exch.

The expressions for the total quantities

Aik
1234s(ω) =

∫
(Kik

left + Kik
right + Kik

exch)1234s(ε, ω)
dε

2πi
(67)

can be obtained using the Appendix.

Now we are able to write down the complete formulae
for δG and δGh in our approximations:

δG = K11V + K12V h ,

δGh = K21V + K22V h . (68)

The quantities Kik are given in the Appendix. The equa-
tions for the effective fields V and V h in our approxima-
tions are given by

V = ēqV
0 + F̄{A11V + A12V h} ,

V h = ēh
qV 0h + F̄{A21V + A22V h} . (69)
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〈V 0〉 = V + V h

+ V --- V --- V --- V

--- V h --- V h + V h --- V h

+ V --- V --- V --- V

--- V h + V h --- V h --- V h

+ V + V + V + V

--- V h + V h + V h --- V h

+ similar graphs with the external field ēh
qV 0h , (72)

According to eqs. (32), (68) or (42), the density matri-
ces ρ, ρh are connected with the effective fields as follows:

ρ(ω) = A11V + A12V h ,

ρh(ω) = A21V + A22V h , (70)

and the equations for them are

ρ(ω) = A11ēqV
0 + A12ēh

qV 0h + A11F̄ ρ + A12F̄ ρh ,

ρh(ω) = A21ēqV
0 + A22ēh

qV 0h + A21F̄ ρ + A12F̄ ρh . (71)

4.2.2 The polarization operator

According to eq. (44) the polarization operator in our ap-
proximations is given by the following graphs:

see eq. (72) above ,

where the thick point indicates that in the medium the
local charges ēq and ēh

q enter.

5 Inclusion of the single-particle continuum

Taking into account the continuum is important for sev-
eral reasons. Part of them was considered in ref. [33] on the
QRPA level, we will discuss here the role of the continuum
in connection with the complex configurations’ problem.

1. The continuum gives the real physical envelope for the
processes at excitation energies higher than the nu-
cleon separation energy. For the giant resonance, this

gives the escape width Γ ↑. The contribution of it de-
pends, in general, noticeably on the atomic number,
the excitation energy etc. So it is not very realistic,
especially in calculations of such delicate properties as
fine structure and decay characteristics, to imitate the
role of continuum by a constant smearing parameter.
The realistic treatment of the continuum is important
for E1 giant resonances in 40Ca and 48Ca [10] and, of
course, in light nuclei.
As is well known it is possible to include the single-
particle continuum exactly, i.e. to avoid any trunca-
tion of the λ-basis, within the RPA approach in the
coordinate representation [34]. A generalization of this
approach to the QRPA has been done in [33] for the de-
scription of the first 2+ levels where the method of the
so-called mixed {r, λ}-representation has been used.

2. In the complex configurations problem under consid-
eration, using the λ-representation gives matrices of a
very large rank especially in the case of treatment of
the ground-state correlations caused by complex con-
figurations. Using the coordinate representation has a
big numerical advantage in this problem because the
rank of matrices is now determined not by the number
of configurations but by the number of mesh points
where the corresponding integral equation is solved.

3. Last not least, it should be emphasized also that only
a reliable inclusion of the single-particle continuum
makes it possible to calculate nuclei with nucleon sep-
aration energy near zero. This is important for drip
line nuclei and for astrophysical studies.

Thus, we generalize the approach for magic nuclei of
ref. [10] to include pairing.
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In coordinate representation eqs. (71) have the form

ρ(r, ω) =
∫

A11(r, r ′, ω)ēqV
0(r ′)dr ′

+
∫

A12(r, r ′, ω)ēh
qV 0h(r ′)dr ′

+
∫

A11(r, r ′, ω)F̄ (r ′)ρ(r ′, ω)dr ′

+
∫

A12(r, r ′, ω)F̄ (r ′)ρh(r ′, ω)dr ′ ,

ρh(r, ω) =
∫

A21(r, r ′, ω)ēqV
0(r ′)dr ′

+
∫

A22(r, r ′, ω)ēh
qV 0h(r ′)dr ′

+
∫

A21(r, r ′, ω)F̄ (r ′)ρ(r ′, ω)dr ′

+
∫

A22(r, r ′, ω)F̄ (r ′)ρh(r ′, ω)dr ′, (73)

where we have specialized to an effective contact force
F̄ (r), see subsect. 6.2 below, and the propagators are given
by

A11(r, r ′, ω) =
∑
1234

A11
1234φ

∗
1(r )φ2(r )φ3(r ′)φ∗

4(r
′) ,

A12(r, r ′, ω) =
∑
1234

A12
1234φ

∗
1(r )φ2(r )φ3(r ′)φ∗

4(r
′) (74)

and so forth. To calculate the propagators in the coor-
dinate representation in our problem with pairing it is
convenient to use the fact that pairing is important only
for a small number of levels near the Fermi surface. Thus,
since the propagators A12 and A21 are proportional to
∆̃2 (see Appendix), we use eq. (74) for them and for the
propagator A11 we take

A11(r, r ′, ω) = ÃQRPA(r, r ′, ω)

+
∑
1234

(A11
1234 − ÃQRPA

1234 δ13δ24)φ̃∗
1(r )φ̃2(r )φ̃3(r ′)φ̃∗

4(r
′)

(75)

and similary for A22. Here ÃQRPA is the corresponding
“refined” QRPA propagator in which the single-particle
spectrum is taken into account exactly within the RPA
and the corrections caused by pairing are calculated ex-
plicitly, for example

F (1,2)(r, r ′, ε) = −
∑
1

∆̃1

ε2 − Ẽ2
1

φ̃∗
1(r )φ̃1(r ′) (76)

and for the part δG of the Green function responsible for
pairing

δG(r, r ′, ε) =
∑
1

∆̃2
1

(ε − ε̃1)(ε2 − Ẽ2
1)

φ̃∗
1(r )φ̃1(r ′) (77)

(for details see refs. [5,10,33]). Like in refs. [5,10] the sum-
mation in eq. (75) should be performed in a basis which

is not less than two shells above and two below the Fermi
surface plus the unfilled shell near it.

Such a combined method is most convenient for nu-
merical calculations. Making use of eq. (75) means that
we underestimate the contribution of the single-particle
continuum. The calculations in magic nuclei [5,10], where
a formula similar to (75) was used, have shown that this
underestimation is not large for giant resonances.

6 Discussion of the main equations

Here we will discuss some pecularities and the physical
approximations of the approach.

6.1 Ground-state correlations due to complex
configurations

In the Hartree-Fock approximation, the nuclear ground
state is assumed to be that of a gas of non-interacting
fermions in a potential well. The presence of the residual
interaction changes this state to what is called a correlated
ground state. The ground-state correlations are treated in
different approximations; most important and best known
are the pairing correlations and the RPA ground-state cor-
relations.

In a graphical expansion, the presence of ground-
state correlations manifests itself in the possibility of
(sub-)graphs which correspond to the creation of a number
of virtual elementary excitations (particles, holes, quasi-
particles, or phonons) from the vacuum, or the opposite
process of annihilation leading to the vacuum state again.
In the case of pairing correlations, this is the sponta-
neous creation of a correlated particle-particle pair (which
emerge from a kind of condensate), while RPA-type cor-
relations correspond to the elementary process of creation
of two particle-hole pairs from the vacuum by the resid-
ual interaction (which, of course, may happen more than
once, yielding components with four, six, . . . particle-hole
pairs).

In the case of pairing, the Bogolyubov-quasiparticles
are determined in such a way that the spontaneous gen-
eration of a quasiparticle pair is impossible, while the
quasiparticle-RPA ground-state correlations are due the
possibility of the elementary process of spontaneous gen-
eration of four quasiparticles.

Our present approach incorporates all the correlations
mentioned so far, but in addition also terms which are
not included on the (Q)RPA level. We will denote the
latter by GSCphon. There may be cases when only the
diagrams corresponding to GSCphon exist, i.e. all the ef-
fect is determined by GSCphon, as noted in the intro-
duction. Thus, these new GSCphon lead to a redistribu-
tion of the strength or sometimes to the appearance of
new transitions in which the external field couples the
correlated ground state directly to the two-quasiparticle–
phonon configurations. In this latter sense our approach
is qualitatively different from the RPA or QRPA.
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For magic nuclei ground-state correlations which are
similar to our GSCphon have been calculated and discussed
in refs. [5,13,14,16]. In ref. [5] there is also a detailed de-
scription of the pole and diagram structure of the ground-
state correlations which were considered there. In partic-
ular, it was obtained that they give an increase of the
energy weighted sum rules of 4–7% for the isovector E1
and isoscalar E0, E2 resonances in 40Ca, 48Ca and 56Ni.
Taking any ground-state correlations beyond the (Q)RPA
into account is very involved numerically and making use
of the coordinate representation decreases the difficulties
strongly, as discussed in sect. 5.

One can expect that GSCphon may be quantitatively
important at least for low-lying excitations in non-magic
nuclei.

6.2 The effective interactions and local charges

In all our equations the new effective interactions F̄ , F̄ ξ

and local charges ēq, ē
′
q enter. In general, their parameters

should be determined in the framework of the present ap-
proach and these quantities should differ from the old ones
because we have singled out explicitely the most “danger-
ous” complex configurations from F , eq and F ξ, e′q.

However, as in the case of magic nuclei, we are going to
use a relatively small number of collective and low-lying
phonons which give the main contribution to the charac-
teristics of giant resonances and the low-lying excitation
spectrum. (A more detailed discussion can be found in
ref. [12].)

The corrections of the effective interactions and local
charges due to the inclusion of the phonons under con-
sideration must be irregular and of a long-range charac-
ter. Thus, one can hope that these non-local corrections
of the local quantities under discussion are small and we
can use the old parameters of F and eq instead of the new
ones at least as a first approximation. This approximation
has been confirmed by the calculations in magic nuclei [5,
10–16]. A similar conclusion about F ξ and F̄ ξ is also con-
firmed in our preliminary results of solutions of the gap
equations containing F ξ and F̄ ξ.

6.3 The “smearing” parameter

The main results of our approach have been formulated in
sects. 3 and 4 in the discrete λ̃ representation (to be exact:
in the representation of the wave function φ̃λ) and also in
sect. 5 in the coordinate representation. In both cases it
is necessary to introduce a smearing parameter η which
roughly describes the contribution of those complex con-
figurations which were not taken into account explicitely
and, in addition, simulates the finite experimental resolu-
tion. So we choose η to be equal, at least approximately,
to the experimental resolution. In the calculations of gi-
ant resonances in magic nuclei [5,10–14,16] we used the
smearing parameter η = Γ/2 (Γ is the width of the Breit-
Wigner distribution for an isolated peak of the strength
function) from the range η = 100–500 keV. However, when

studying the fine structure, e.g., for the isoscalar E2 res-
onance in 208Pb [15], we used the parameter η = 20 keV
and obtained a reasonable description of the experiment
(see also the discussion on the resonance fine structure and
experimental resolution in ref. [13]). The use of the smear-
ing parameter decreases the numerical difficulties consid-
erably.

It is clear that, in general, the smearing parameter
should depend on the excitation energy and it would be
desirable to have a more realistic description of the appro-
priate effects. Taking into account the known difficulties
with a full microscopic description of the optical potential
there is a sense to use the known phenomenological “re-
fined” optical potential. This procedure will be described
elsewhere.

6.4 Other approximations

In the formulae for the mass operators (1), (2) and for
the propagators we use the phonons calculated separately
and microscopically within the TFFS. Therefore, as it is
known for the case of magic nuclei, there is double count-
ing of the lowest-order contribution to the corresponding
mass operators. However, since only collective phonons are
accounted for, the error introduced by this should be neg-
ligible. That was also shown numerically earlier in ref. [35]

In addition, using these, in fact, phenomenological
phonons means that they contain some additional con-
tributions which should be excluded, strictly speaking, in
the famework of our approach. However, the correspond-
ing contributions (refinement of phonons) are of order g4

and need not to be considered here.
It is necessary to emphasize that we mean everywhere

the relatively small number of phonons which are selected
in such a way that the energies of the appropriate complex
configurations are roughly in the energy region under con-
sideration. All the rest of the configurations in the mass
operators are effectively accounted for by the use of refined
single-particle energies ε̃λ, gaps ∆̃λ and the parameter η.
Thus, our assumption is that the rest of the configura-
tions in the mass operators can be taken into account on
a simple phenomenological level. This is an extension and
application of the ideas of the standard TFFS to a phe-
nomenological treatment of the configurations which are
more complex than the RPA ones by the introduction of
effective interactions and local charges. Due to such an
approach we avoid, at least on the present level of under-
standing of the problem, the difficult questions of explicit
treatment of all the complex configurations and of the full
microscopic description of the optical potential. On the
other hand, our refinement procedure for single-particle
energies and gaps (subsect. 3.4) is satisfactory numerically
because in our mass operators we take into account only
the same phonons which are explicitely accounted for in
our final formulae.

During the numerical realization of the approach in
the g2 approximation discussed (sect. 4) difficulties con-
nected with unphysical second-order poles of the propa-
gators may appear. As it has been shown in ref. [22], for
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the isovector M1 resonances in magic nuclei these poles
are at the very lowest part of the energy spectrum and
contribute to the sum rules only negligibly. The same sit-
uation is expected in non-magic even-even nuclei, at least
for the isovector excitations. However, it is desirable to
implement a procedure to circumvent these difficulties.

To each of the second-order poles one can find higher-
order graphs corresponding to third-order, fourth-order
. . . poles. Together with the diagram yielding the first-
order pole, this subclass of graphs can be summed as a ge-
ometrical series, with the result of a sum of only first-order
pole terms [36,5,10]. The best known example for this is
the solution of the Dyson equation for the single-particle
Green function which sums up any number of insertions of
the mass operator into the unperturbed propagator. Sim-
ilar procedures work also for two-particle propagators, or
more complicated graphs in general. An example is pre-
sented in sect. 7.

Though in such a procedure graphs of arbitrary order
in g2 are summed up, one should be aware of the fact that
already in order g4, some terms are missing, and the rel-
ative number of omitted terms increases with increasing
order of the graphs. Thus, by doing such partial summa-
tion, one is not really going beyond the g2 approxima-
tion, since already the order g4 is not correctly included.
Therefore, in special cases, simpler approximate methods
to eliminate unphysical poles may be preferrable.

For magic nuclei, an approximate procedure of sum-
mation of the g2 terms in the propagator has been devel-
oped in [5,10]. But for non-magic nuclei such a summation
would be too involved and hardly feasible at present. The
development of a simpler procedure is in progress.

7 Specific cases and schematic models

It would be interesting to analyse more in detail a sim-
plified variant of our problem which is rather compli-
cated algebraically and numerically, especially for real-
istic non-separable forces. The equations obtained de-
scribe the influence of phonon coupling or, more precisely,
particle-vibration coupling (complex configurations), on
processes described within the QRPA (simple configura-
tions). Therefore, a corresponding generalization of the
Brown-Bolsterli model for separable forces [37,38] would
be of interest. To our knowledge, no direct generalization
has ever been performed for non-magic nuclei. This will
be done in the present section in a two-level model.

We do not expect principal changes due to taking
GSCphon into account, at least as compared with those
given by the complex configurations on the whole (except
several cases, see [13,22]). On the other hand, they will se-
riously complicate the problem, as mentioned above. For
these reasons, we will not include them into our analysis.
To be exact, we omit the fermion GSCphon only, but the
GSCphon caused by the non-pole term of the Green func-
tion (GF) Ds in the cross phonon graphs will be included.
This is done mainly in order to compare with another
method of accounting for complex configurations in magic
nuclei based on Nuclear Field Theory [2] where the latter

kind of the GSCphon was included. However, an analysis
of GSCphon turned out to be possible in the frame of a
one-level model for non-magic nuclei, see at the end of
subsect. 7.1 below.

The main simplification of the model is the use of sep-
arable forces, i.e. in eq. (69) we take

F̄1234 = λq12q34. (78)

Then for the problem with a propagator A(11)
121′2′ , which

contains both simple and complex configurations, the cre-
ation amplitude of an observed phonon with energy ωn

which satisfies the equation

gn
34 =

∑
121′2′

F̄3412A(11)
121′2′(ωn)gn

1′2′ (79)

is given by gn
12 = C(ωn)q12 and eq. (79) gives the secular

equation:

1
λ

=
∑

121′2′
q12A(11)

121′2′(ωn)q1′2′ . (80)

eqs. (79), (80) describe magic nuclei if we take ∆̃ = 0 in
the Appendix. For the RPA case in eq. (80) one should
take A(11)

121′2′ = A11;0
121′2′ .

7.1 Specific cases

If one accounts only for simple configurations without
GSC, then the propagator can be obtained from the RPA
case by keeping only one of two terms of the one-particle
GFs in the integral

A(11)
121′2′(ω)=δ11′δ22′

∫
G+

1 (ε)G−
2 (ε−ω)

dε

2πi
=

δ11′δ22′

ω−ε12
, (81)

where G±
λ (ε) = (ε − ελ ± iδ)−1 (here and further we omit

the tilde). This propagator determines the usual Tamm-
Dancoff equation.

For the case of magic nuclei, to obtain formulae for
the terms containing phonon mixing it is necessary to put
∆̃ = 0 in our Appendix. Graphically this corresponds to
the three graphs, each of them is the first term on the
left in the graphs for the quantity K11 of Appendix, eq.
(A.2). We should obtain the case without GSCphon from
these graphs. Acting in analogy with eq. (81) and leaving
only a “fixed” particle and hole in them we obtain for
example for the second graph:

I2s
1231′(ω) =∫

dεdω1

2πi
G+

1 (ε)G+
3 (ε−ω1)Ds(ω1)G+

1′(ε)G−
2 (ε−ω). (82)

A similar procedure should be done for the rest of the
graphs but, according to our above-mentioned plan to in-
clude especially the non-pole term of the GF Ds in the
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cross phonon graph, we should add the fourth term. The
final result is given by

A(11)
121′2′(ω) =

δ11′δ22′

ω − ε12
+

1
(ω − ε12)(ω − ε1′2′)

×
[
δ22′

∑
3,s

gs
13(g

+)s
31′

ω − ε32 − ωs
+ δ11′

∑
3,s

gs
2′3(g

+)s
32

ω − ε13 − ωs

−
∑

s

gs
11′(g+)s

2′2

(
1

ω−ε1′2−ωs
+

1
ω−ε12′−ωs

)]
. (83)

This formula corresponds to the results obtained in ref. [2]
in Nuclear Field Theory.

We substitute (83) into (80) and restrict ourselves here
and further to the case of one phonon mode s. Then the
secular equation is as follows:

1
λ

= f(ω) ≡
∑
12

|q12|2
ω − ε12

+
∑

121′2′

q12q1′2′

(ω − ε12)(ω − ε1′2′)

×
[
δ22′

∑
3

gs
13g

s
1′3

ω − ε32 − ωs

+ δ11′
∑
3

gs
2′3g

s
23

ω − ε13 − ωs
− 2gs

11′gs
22′

ω − ε1′2 − ωs

]
. (84)

For non-magic nuclei, the secular equation without
GSC, which is analogous to eq. (84) for magic nuclei, is
derived in analogy with the previous derivation using the
formulae of the Appendix. For nuclei with pairing there
are, however, some complications: 1) it is necessary to add
new GFs F (1) and F (2), 2) as in the QRPA there are addi-
tional transitions —diagonal ones and transitions between
levels which are both below or both above the Fermi level,
3) instead of one equation for the vertex V there is a sys-
tem of two equations for V and V h.

In order not to complicate the problem algebraically
we use the approximation V = V h. This corresponds to
the absence of spin forces which are not important, in
principle, for electric excitations, see in [39] an analysis
based on conservation laws. Then we obtain from eq. (69):

1
λ

=
∑

121′2′
q12(A11

121′2′(ωn) + A12
121′2′(ωn))q1′2′ . (85)

Substitution of the corresponding formulae of the Ap-
pendix gives the secular equation (without any GSC)

1
λ

= f(ω) =
∑

121′2′
q12q1′2′

u1v2(u1′v2′ + v1′u2′)
ω − E12

×
{

δ11′δ22′ +
1

ω − E1′2′

[
δ22′

∑
3

gs
13g

s
1′3

ω − E32 − ωs
X11′33

+ δ11′
∑
3

gs
2′3g

s
23

ω − E13 − ωs
X22′33

− 2gs
11′gs

22′
1

ω − E1′2 − ωs
X121′2′

]}
, (86)

where

X121′2′ = u1u2u1′u2′ + u1v2u1′v2′

+v1u2v1′u2′ + v1v2v1′v2′ , (87)

and the sums in eqs. (85) and (86) are free, i.e. non-
restricted.

To solve this equation it is necessary to know the ex-
pression for gs

12 in the Tamm-Dancoff approximation for
nuclei with pairing. It has the form

gs
12 = q12

(∑
34

|q34|2u3v4(u3v4 + u4v3)
(ωs − E34)2

)− 1
2

. (88)

It can be easily seen from eq. (86) that for the one-level
model the complex configurations (they contain g2 terms)
do not give a contribution. The terms corresponding to
the cross phonon and insertion graphs cancel each other.
Thus, within the one-level model, where there are only
diagonal transitions, the particle-phonon coupling gives
the GSCphon contribution only, i.e. here we have a pure
effect caused by GSCphon. After lengthy algebraic manip-
ulations, we obtain the following simple formula for the
terms of the propagators A11 and A12:

A11 = A12 ≡ AQRPA
1111 + A1p1h⊗phon

1111 =
4Eu2v2

ω2 − 4E2
− 2u2v2g2

{
1

(ω − 2E)2(ω − 2E − ωs)

+
1

(ω + 2E)2(−ω − 2E − ωs)

}
(89)

(we omitted the index 1 of the quantities u, v, E). An
analysis of the GSCphon becomes complicated here by the
second-order poles and will be performed elsewhere. From
qualitative and quantitative points of view, at this stage
it is of much more interest to analyse the phonon coupling
effects for non-magic nuclei given by eq. (86).

7.2 Two-level model calculations

In order to deal with possible unphysical second-order
poles (ω −E12)−2 of the function f(ω) defined in eq. (84)
which correspond to diagonal g2 terms {1 = 1′, 2 = 2′}
and {1 = 2′, 2 = 1′} in eq. (84) or (86), we adopt the
following simple procedure. Our approximation to f(ω)
contains the sum of two terms

α12(ω) =
a

ω − E12
+

b

(ω − E12)2
=

a

ω − E12

(
1 +

b

a(ω − E12)

)
, (90)

which correspond to the (Q)TDA and g2 terms corre-
spondingly. If we had gone beyond the g2 approximation,
we would have obtained additional terms of higher order.
Therefore, we assume that the expression in brackets is
the beginning of the infinite geometrical progression

1 +
b

a(ω − E12)
+

(
b

a(ω − E12)

)2

+ ... , (91)
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Fig. 1. Graphical solution of the secular equation (95). This
equation was obtained from eq. (86) in the two-level non-
diagonal approximation after the summation procedure (93).
The solid curves give the function f(ω) (94) with phonon cou-
pling, the dashed curves give the corresponding function for
the case without phonon coupling. Solutions in both cases are
obtained from intersections of the functions f(ω) with the hor-
izontal straight lines 1/λ for λ1 < 0 and λ2 > 0. The verti-
cal straight lines correspond to the phonon coupling poles at
(E12 +b/a) (at 15.6 MeV) ) and (E12 +ωs) (at 18.6 MeV), and
to the pole at E12 (at 16.1 MeV) for the case without phonon
coupling. For details see subsect. 7.2.

with the progression factor q:

q =
b

a(ω − E12)
. (92)

Then we perform the summation
∑∞

k=0 qk and obtain the
result

α12(ω) � a

ω − E12 − b/a
, (93)

which contains now only the first-order pole, which has
been shifted in energy by the amount b/a. Of course, there
is convergence only if |q| < 1. But from the regions of con-
vergence we can continue analytically to yield the result
(93). This is illustrated in fig. 1 below.

Let us consider a simple two level model which, in ad-
dition, has no diagonal transitions in the limit of absence
of complex configurations (two-level non-diagonal approx-
imation). One can easily show that the latter means that
the poles of the (Eλλ + ωs − ω)−1 kind are cancelled and,
after some simple algebra, we obtain for the function f(ω)
in eq. (86)

f(ω) = |q12|2(u1v2 + u2v1)2

×
[

1
ω − E12

+
(g11 − g22)2

(ω − E12)2(ω − E12 − ωs)

]
. (94)

Here g11 and g22 are the amplitudes of a low-lying phonon.
We see that for the two-level model considered only diago-
nal matrix elements of creation amplitudes of the low-lying
phonon give a contribution.

After performance of the above-described summation
procedure for eq. (94), we obtain the following secular
equation:

1/λ = |q12|2(u1v2 + u2v1)2

×
[

a

ω − E12 − b/a
+

(g11 − g22)2

ω2
s(ω − E12 − ωs)

]
, (95)

where a = 1 − ω−1
s (g11 − g22)2, b = −ω−1

s (g11 − g22)2.
Thus, as a result, two first order poles at ω = E12 + b/a
and ω = E12 + ωs are obtained.

In our calculations we put ∆̃λ = ∆λ, ε̃λ = ελ. To
demonstrate a realistic pairing effect we have taken ∆ =
1 MeV and the low-lying single-particle energies in eq. (88)
ελ−µ = −1 MeV and 2 MeV. Correspondingly, a low-lying
phonon with energy ωs = 2.5MeV has been assumed. The
quantities qλ1λ2 were taken of order 1 fmL where L is
the multipolarity of transitions, in particular, in eq. (95)
the q12 value is 2.1 fmL. This has been done in order to
satisfy the conditions that the g2 approximation should be
meaningful, but a noticeable value of the energy shift b/a
should result. One should note that, according to eq. (88),
the order of the qλ1λ2 value is not important.

The solution of eq. (95) are obtained graphically from
intersections of the function f(ω) plot with the straight
line 1/λ. In order to simplify the analysis and imitate
a giant resonance we took a large single-particle differ-
ence in eq. (95) for two levels ελ − µ = −10 MeV and
6 MeV so that ε12 = 16 MeV. Diagonal matrix elements of
the phonon creation amplitude calculated from eq. (88),
where the four single-particle levels have been included,
are g11 = 0.24 MeV and g22 = 1.2 MeV. These four levels
at the energies ελ−µ = −1, 2, −10, and 6 MeV have been
used to correspond realistically to our low-lying phonon at
2.5 MeV, on the one hand, and to have matrix elements
gλ1λ2 for the two high-lying levels under consideration, on
the other hand.

The graphical solution of eq. (95) is given in fig. 1.
The lines 1/λ were drawn rather arbitrarily to show solu-
tions for both λ < 0 (“isoscalar resonance”) and λ > 0
(“isovector resonance”) We obtained b/a = −0.5MeV.
This shift is considerably smaller (in absolute value) than
the shift obtained from the mixing of particle-hole config-
urations (“simple configurations”) in TDA (or RPA). In
addition to this shift there occurs a redistribution of tran-
sition strength. The increase in the number of solutions,
as compared with the QRPA case, and the redistribution
of strength correspond to the spreading width Γ ↓ of giant
resonances in non-magic nuclei which, as it is known, is
one of the main contributions to the total width for heavy
nuclei. A more detailed and realistic model analysis will
be performed elsewere.

8 Conclusion

In this work a microscopic approach has been formu-
lated for non-magic nuclei which is a generalization of the
QRPA, to be exact of the standard TFFS. It takes into
account:
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1. complex configurations of the two-quasiparticle–
phonon type which makes it possible to go beyond the
QRPA due to explicit treatment of the quasiparticle-
phonon interaction;

2. the single-particle continuum which makes it possible
to obtain a realistic envelope of the resonance with-
out using a smearing parameter and, in addition, to
decrease strongly numerical difficulties which is espe-
cially important for the problem of accounting for com-
plex configurations;

3. ground-state correlations caused not only by the
QRPA configurations but by the more complex ones
which are more important and interesting physically
than the QRPA ground-state correlations;

4. non-separable particle-hole and particle-particle inter-
actions, the parameters of which are mainly known;

5. the quasiparticle-phonon interaction in the particle-
particle channel, including a refinement of the phe-
nomenological pairing gap from this interaction. The
latter means taking explicitely into account the main
part of the quasiparticle-phonon mechanism of nuclear
pairing (in addition to the usual mechanism of BCS
type).

Thus, when applied to the theory of giant multipole
resonances in non-magic nuclei, the approach explicitely
contains the three known mechanisms of resonance damp-
ing: decay via particle-hole configurations of the discrete
spectrum (analog of Landau damping), decay via particle-
hole configurations with a particle in the continuum (es-
cape width) and decay via more complicated confiurations
of two-quasiparticle–phonon type (spreading width).

Two features of the theory —account for the single-
particle continuum and making use of the known interac-
tion parameters— allow to hope for successful application
of the theory to calculate unstable non-magic nuclei in-
cluding those with nucleon separation energy near zero. It
would be very important to check the universality of the
Landau-Migdal interaction in exotic nuclei to understand
where this universality is valid.

The specificity of non-magic nuclei in our approach is
not only the consistent inclusion of anomalous mass op-
erators M (1), M (2) (eq. (2)) to describe the nuclear exci-
tations but also an improvement of nuclear pairing the-
ory by taking explicitely into account the refinement of
the phenomenological gap. The quantitative role of these
effects in the particle-particle channel have been already
shown in calculations of energies and spectroscopic factors
for low-lying excitation in 119Sn and 121Sn [30]. It is very
interesting to find other consequences of these effects, in
particular, to understand better the role and mechanisms
of nuclear pairing.

Thus in the approach developed, two ingredients —
ground-state correlations and the refinement of the phe-
nomenological gap connected with an improved pairing
theory— should be important for the description of low-
lying excitations in non-magic nuclei. The possibilities of
the modern gamma spectrometers [18] allow to study these
effects.

In conclusion, one can hope that the microscopic ap-
proach developed, which together with the theory for
magic nuclei [5,10–16] can be called the Extended Theory
of Finite Fermi Systems, corresponds to the modern sta-
tus of low-energy experimental physics including both the
giant resonances and the results obtained using modern γ-
detector arrays. On the one hand, it is an improved theory
with some new ingredients and simultaneous treatment of
several other ones known before. On the other hand, the
numerical realization of the approach should not be too in-
volved to apply it to many stable and unstable non-magic
nuclei. We cannot yet present numerical results referring
to actual nuclei. This will be done in future work.

S. K. wishes to express his gratitude to the Institut für Theo-
retische Physik, Universität Hannover, for the hospitality dur-
ing several visits due to which this work could be finished.

Appendix A. Propagators of the system for
the effective fields in non-magic nuclei taking
into account QRPA and two-quasiparticle–
phonon configurations with GSCphon

We use the one-quasiparticle Green functions determined
by (28), the one-phonon Green function

Ds(ω) =
1

ω − ωs + iδ
− 1

ω + ωs − iδ
(A.1)

and omit the tilde “˜” in all the Appendices. The graphic
representation for the quantities Kik is the following:

K11 =

+ --- --- ---

+ --- --- ---

+ + + +

(A.2)

K12 =

--- --- + ---

--- + --- ---

--- + + ---

(A.3)
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K21 =

--- + --- ---

--- --- + ---

--- + + ---

(A.4)

K22 =

--- --- --- +

--- --- --- +

+ + + +

(A.5)

Let us introduce an additional notation for the terms
of propagator corresponding to various graphs in this rep-
resentation. In the quantities Aik;l the additional index
l = 0–12 denotes the number of the graph: l = 0 corre-
sponds to the QRPA one, l = 1–4 is for the “left” insertion
graphs, l = 5–8 for the “right” insertion graphs and l = 9–
12 for the phonon exchange graphs, e.g.

Aik =
∑

l=0-12
Aik;l . (A.6)

The QRPA components of propagator are given by the
known expressions:

A11;0
121′2′(ω) = δ11′δ22′

∫
dε

2πi
G1(ε)G2(ε − ω) =

−δ11′δ22′
( u2

1v
2
2

E12 − ω
+

v2
1u2

2

E12 + ω

)
;

A12;0
121′2′(ω) = δ11′δ22′

∫
dε

2πi
F

(2)
1 (ε)F (1)

2 (ε − ω) =

δ11′δ22′
2E12u1v1u2v2

E2
12 − ω2

, (A.7)

where E12 = E1 +E2. The first term with “left” insertion
graph corresponding to the second graph in K11 has the
form

A11;1
121′2′(ω) = −δ22′

∑
3,s

gs
13(g

s+)31′I
(11;1)s
121′3 (ω); (A.8)

I
(11;1)s
121′3 (ω) =∫

dεdω1

(2πi)2
G1(ε)G3(ε − ω1)G1′(ε)G2(ε − ω)Ds(ω1) =

v2
3Gh

2(E3 + ω + ωs)
[
u2

1G1′(E1)
E13 + ωs

+
u2

1′G1(E1′)
E1′3 + ωs

]
+ u2

3G2(E3 − ω + ωs)
[
v2
1Gh

1′(E1)
E13 + ωs

+
v2
1′Gh

1(E1′)
E1′3 + ωs

]
+ v2

2Gh
3s(E2 − ω)

[
u2

1G1′(E1)
E12 − ω

+
u2

1′G1(E1′)
E1′2 − ω

]
+ u2

2G3s(E2 + ω)
[
v2
1Gh

1′(E1)
E12 + ω

+
v2
1′Gh

1(E1′)
E1′2 + ω

]
, (A.9)

where

G3s(ε) =
u2

3

ε − E3s
+

v2
3

ε + E3s
, E3s = E3 + ωs . (A.10)

The corresponding term with the “right” insertion
graph in K11 is expressed through the previous one

A11;5
121′2′(ω) = −δ11′

∑
3,s

gs
2′3(g

s+)32I
(11;5)s
122′3 (ω); (A.11)

I
(11;5)s
122′3 (ω) = I

(11;1)s
212′3 (−ω) . (A.12)

The term with phonon exchange has the form

A11;9
121′2′(ω) = −

∑
s

gs
11′(gs+)2′2I

(11;9)s
121′2′ (ω); (A.13)

I
(11;9)s
121′2′ (ω) =

∫
dεdω1

(2πi)2

×G1(ε)G2(ε−ω)G1′(ε−ω1)G2′(ε−ω1−ω)Ds(ω1) =

v2
2Gh

1(E2 − ω)
[
u2

2′G1′(E2′ + ω)
E22′ + ωs

+
u2

1′G2′(E1′ − ω)
E21′ − ω + ωs

]

+ u2
2G1(E2 + ω)

[
v2
2′Gh

1′(E2′ − ω)
E22′ + ωs

+
v2
1′Gh

2′(E1′ + ω)
E21′ + ω + ωs

]

+ v2
1Gh

2(E1 + ω)
[
u2

2′G1′(E2′ + ω)
E12′ + ω + ωs

+
u2

1′G2′(E1′ − ω)
E11′ + ωs

]

+ u2
1G2(E1 − ω)

[
v2
2′Gh

1′(E2′ − ω)
E12′ − ω + ωs

+
v2
1′Gh

2′(E1′ + ω)
E11′ + ωs

]
(A.14)

As the expressions for the normal and the anomalous
Green functions contain the same poles and differ only by
the occupation numbers (residues) and signs,

Gλ(ε) =
u2

λ

ε − Eλ + iδ
+

v2
λ

ε + Eλ − iδ
;

Fλ(ε) = −uλvλ

[
1

ε − Eλ + iδ
− 1

ε + Eλ − iδ

]
, (A.15)



S. Kamerdzhiev et al.: Quasiparticle-phonon interaction in non-magic nuclei 303

one may obtain A11;2, A11;3 from A11;1 by formal substi-
tutions. To get the expression for A11;2, we should perform
the following substitutions:

u2
1′ → −u1′v1′

v2
1′ → u1′v1′

u2
3 → −u3v3

v2
3 → u3v3

 . (A.16)

Thus, the quantity A11;2 is given by

A11;2
121′2′(ω) = −δ22′

∑
3,s

gs
13(g

s+)31′I
(11;2)s
121′3 (ω) ; (A.17)

I
(11;2)s
121′3 (ω) =

u3v3G
h
2(E3 + ω + ωs)

[
u2

1F1′(E1)
E13 + ωs

− u1′v1′G1(E1′)
E1′3 + ωs

]
− u3v3G2(E3 − ω + ωs)

[
v2
1F1′(E1)
E13 + ωs

+
u1′v1′Gh

1(E1′)
E1′3 + ωs

]
+ v2

2F3s(E2 − ω)
[
u2

1F1′(E1)
E12 − ω

− u1′v1′G1(E1′)
E1′2 − ω

]
+ u2

2F3s(E2 + ω)
[
v2
1F1′(E1)
E12 + ω

+
u1′v1′Gh

1(E1′)
E1′2 + ω

]
. (A.18)

To obtain the expression for A11;3 we should substitute

u2
1 → −u1v1

v2
1 → u1v1

u2
3 → −u3v3

v2
3 → u3v3

 . (A.19)

The term A11;4 contains the function Gh

Gh
λ(ε) = Gλ(−ε) =

−v2
λ

ε − Eλ + iδ
+

−u2
λ

ε + Eλ − iδ
, (A.20)

so it can be obtained by the substitution

u2
1 → −u1v1

v2
1 → u1v1

u2
1′ → −u1′v1′

v2
1′ → u1′v1′

u2
3 → −v2

3

v2
3 → −u2

3


. (A.21)

Other components of the propagator can be obtained
by the same way from the two “base” expressions for
A11;1

121′2′(ω) and A11;9
121′2′(ω).
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